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ABSTRACT
Runtime monitoring is commonly used to detect the violation of

desired properties in safety critical cyber-physical systems by ob-

serving its executions. Bauer et al. introduced an influential frame-

work for monitoring Linear Temporal Logic (LTL) properties based

on a three-valued semantics: the formula is already satisfied by

the given prefix, it is already violated, or it is still undetermined,

i.e., it can still be satisfied and violated by appropriate extensions.

However, a wide range of formulas are not monitorable under this

approach, meaning that they have a prefix for which satisfaction

and violation will always remain undetermined no matter how it is

extended. In particular, Bauer et al. report that 44% of the formulas

they consider in their experiments fall into this category.

Recently, a robust semantics for LTL was introduced to capture

different degrees by wich a property can be violated. In this paper

we introduce a robust semantics for finite strings and show its

potential in monitoring: every formula considered by Bauer et

al. is monitorable under our approach. Furthermore, we discuss

which properties that come naturally in LTL monitoring — such as

the realizability of all truth values — can be transferred to the

robust setting. Lastly, we show that LTL formulas with robust

semantics can be monitored by deterministic automata and report

on a prototype implementation.

CCS CONCEPTS
• Theory of computation → Formal languages and auto-

mata theory; Modal and temporal logics; Logic and verifica-
tion; •Computer systems organization→Dependable and fault-
tolerant systems and networks.
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1 INTRODUCTION
Runtime monitoring is nowadays routinely used to assess the satis-

faction of properties of systems during their execution. To this end,

a monitor, a finite-state device that runs in parallel to the system

during deployment, evaluates it with respect to a fixed property.

This is especially useful for systems that cannot be verified prior to

deployment and, for this reason, can contain hidden bugs. While it

is useful to catch and document these bugs during an execution of

a system, we find that the current approach to runtime verification

based on Linear Temporal Logic (LTL) [13] is not sufficiently infor-

mative, especially in what regards a system’s robustness. Imagine

that we are monitoring a property φ and that this property is vio-

lated during an execution. In addition to be alerted to the presence

of a bug, there are several other questions we would like to have

answered such as: Although φ was falsified, was there a weaker
version of φ that was still satisfied or did the system fail catastrophi-

cally? Similarly, if we consider a property of the formφ → ψ , where
φ is an environment assumption andψ is a system guarantee, and

the environment violates φ slightly along an execution can we still

guarantee thatψ is only slightly violated?

Answering these questions requires a logical formalism for spec-

ifying properties that provides meaning to terms such as weaker
and slightly. Formalizing these notions within temporal logic, so

as to be able to reason about the robustness of a system, was the

main impetus behind the definition of robust Linear-time Temporal
Logic (rLTL) [51]. While reasoning in LTL yields a binary result,

rLTL adopts a five-valued semantics representing different shades
of violation. Consider, for example, the specification a → b
requiring that b is always satisfied provided a is always satisfied.

In LTL, if the premise a is violated in a single position of the trace,

then the specification is satisfied vacuously, eliminating all require-

ments on the system regarding b. In this case, rLTL detects a mild

violation of the premise and thus allows for a mild violation of the

conclusion.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.acm.org/publications/policies/artifact-review-badging/#replicated
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While recent work covers the synthesis [51] and verification

problem [5, 6, 51] for rLTL, the runtime verification problem is

yet to be addressed. Since runtime verification can only rely on

finite traces by its nature, interesting theoretical questions open

up for rLTL with finite semantics. On the practical side, the very

same reasons that make runtime verification for LTL so useful

also motivate the need for developing the framework proposed

in this paper for rLTL runtime verification. To this end, we tackle

the problem of evaluating a property over infinite traces based

on a finite prefix similarly to Bauer et al. [13]. If the available

information is insufficient to declare a specification violated or

satisfied, the monitor reports a ?. This concept is applied to each

degree of violation of the rLTL semantics. Thus, the rLTL monitor’s

verdict consists of four three-valued bits, as the rLTL semantics

is based on four two-valued bits. Each bit represents a degree of

violation of the specification in increasing order of severity.

As an example, consider an autonomous drone that may or may

not be in a stable state
1
. The specification requires that it remains

stable throughout the entire mission. However, if the take-off is

shaky due to bad weather, the drone is unstable for the first couple

of minutes. An LTL monitor thus jumps to the conclusion that the

specification is violated whereas an rLTL monitor only reports a

partial violation. As soon as the drone stabilizes, the LTL monitor

does not indicate any improvement while the rLTL monitor refines

its verdict to also report a partial satisfaction.

Some interesting properties that come naturally with LTL moni-

toring cannot be seamlessly lifted to rLTL monitoring. While it is

obvious that all three truth values for finite trace LTL, i.e., satisfied,

violated, and unknown, can be realized for some prefix and for-

mula, the same does not hold for rLTL. Intuitively, the second and

third bit of the rLTL monitor’s four-bit output for the property a
represent whether a eventually hold forever or whether it holds

infinitely often, respectively. Based on a prefix, a monitor cannot

distinguish between these two shades of violation, rendering some

monitor outputs unrealizable.

In addition to that, we investigate how the level of informedness

of an LTL monitor relates to the one of an rLTL monitor. The first

observation is that a verdict of an LTL monitor can be refined at

most once, from an unknown to either true or false. With rLTL

semantics, however, a monitor can refine its output for a given

formula up to four times. Secondly, an LTL monitor can only deliver

meaningful verdicts for monitorable [12] properties. Intuitively, a
property is monitorable if every prefix can be extended by a finite

continuation that gives a definite verdict. We adapt the definition to

robust monitoring and show that neither does LTL monitorability

imply rLTL monitorability, nor vice versa.

Notwithstanding the above, empirical data suggests that rLTL

monitoring indeed providesmore information than LTLmonitoring:

This paper presents an algorithm synthesizing monitors for rLTL

specifications. An implementation thereof allows us to validate

the approach by replicating the experiments of Bauer et al. [12].

As performance metric, we use LTL and rLTL monitorability. They

showed that 44% of their formulas are not LTL-monitorable whereas

we show all of them to be rLTL-monitorable. This indicates that

1
By this we mean, e.g., that the error in tracking a desired trajectory is below a certain

threshold.

rLTL monitoring is an improvement over LTL monitoring in terms

of monitorability and complements the theoretical results with a

practical validation.

The main research contributions of this paper are thus a finite

trace semantics for rLTL coupled with an investigation of its prop-

erties when compared to LTL, as well as an algorithm to synthe-

size monitors for rLTL specifications. The construction is doubly-

exponential in the size of the formula, so rLTL monitoring is no

more costly than LTL monitoring.

Proofs and detailed results of the experimental evaluation omit-

ted due to space constraints can be found in the appendix of the

technical report
2
.

Related Work. In runtime verification [19, 31, 38, 44] the specifi-

cation is often given in LTL [42]. While properties arguing about

the past or current state of a system are always monitorable [30],

LTL can also express assumptions on the future that cannot be

validated using only a finite prefix of a word. Thus, adaptations

of LTL have been proposed which include different notions of a

next step on finite words [21, 41], lifting LTL to a three- or four-

valued domain [12, 13], or applying predictive measures to rule out

impossible extensions of words [53].

Non-binary monitoring has also been addressed by adding quan-

titative measures such as counting events [8, 43]. Most notably,

Bartocci et al. [9] evaluate the “likelihood” that a satisfying or vio-

lating continuation will occur. To this end, for a given prefix, they

count how long a continuation needs to be such that the specifica-

tion is satisfied/violated; these numbers are then compared against

each other. The resulting verdict is quinary: satisfying/violating,

presumably satisfying/violating, or inconclusive. This approach is

similar in nature to our work as it assesses the degree of satisfaction

or violation of a given prefix. However, the motivation and niche

of both approaches differs: Bartocci et al.’s approach computes —

intuitively speaking — the amount of work that is required to satisfy

or violate a specification, which allows for estimating the likelihood

of satisfaction. Our approach, however, focusses on measuring to

what an extend a specification was satisfied or violated.

Apart from that, monitoring tools collecting statistics [1, 4, 26]

become increasingly popular: Snort [48] is a commercial tool for

rule-based network monitoring and computing efficient statistics,

Beep Beep 3 [29] is a tool based on a query language allowing for

powerful aggregation functions and statistical measures. On the

downside, it imposes the overhead of running a heavy-weight appli-

cation on the monitored system. In contrast, we generate monitor

automata out of an rLTL formula. Such an automaton can easily

and automatically be implemented on almost any system with stati-

cally determined memory requirements and negligible performance

overhead. Similarly, the Copilot [45] framework based on synchro-

nous languages [15, 16] transforms a specification in a declarative

data-flow language into a C implementation of a monitor with con-

stant space and time requirements. Lola [2, 16] allows for more

involved computations, also incorporating parametrization [25]

and real-time capabilities [24] while retaining constant space and

time requirements.

Another approach is to enrich temporal logics with quantitative

measures such as taking either the edit distance [33], counting the

2
https://arxiv.org/abs/1807.08203

https://arxiv.org/abs/1807.08203


From LTL to rLTL Monitoring HSCC’20, April 21-24, 2020, Sydney, Australia

number of possible infinite models for LTL [27, 52], incorporating

aggregation expressions into metric first-order temporal logic [10],

or using averaging temporal operators that quantify the degree of

satisfaction of a signal for a specification by integrating the signal

w.r.t. a constant reference signal [3].

Rather than enriching temporal logics with such strong quantita-

tive measures, we consider a robust version of LTL: rLTL [5, 6, 51].

Robust semantics yields information about to which degree a trace

violates a property. We adapt the semantics to work with finite

traces by allowing for intermediate verdicts. Here, a certain de-

gree of violation can be classified as “indefinite” and refined when

more information becomes available to the monitor. In a similar

fashion, for Signal Temporal Logic [39, 40], Fainekos et al. [22] intro-

duced a notion of spacial robustness based on interpreting atomic

propositions over the real numbers. The sign of the real number

provides information about satisfaction/violation while its abso-

lute value provides information about robustness, i.e., how much

can this value be altered without changing satisfaction/violation.

This approach is complementary to ours since the notion of ro-

bustness in rLTL is related to the temporal evolution of atomic

propositions which are interpreted classically, i.e, over the Booleans.

Donze et al. [18] introduced a notion of robustness closer to rLTL

in the sense that it measures how long we need to wait for the

truth value of a formula to change. While the semantics of rLTL

does not allow to quantify the exact delay needed to change the

truth value of a formula, it allows to distinguish between the in-

fluence that different temporal evolutions, e.g., delays, persistence,

and recurrence, have on the truth value of an LTL formula. Closer

to rLTL is the work of Radionova et al. [47] (see also [50]) that

established an unexpected connection between LTL and filtering

through a quantitative semantics based on convolution with a ker-

nel. By using different kernels one can express weaker or stronger

interpretation of the same formula. However, this requires the user

to choose multiple kernels and to use multiple semantics to reason

about how the degradation of assumptions leads to the degradation

of guarantees. In contrast, no such choices are required in rLTL.

2 ROBUST LINEAR TEMPORAL LOGIC
Throughout this work, we assume basic familiarity with classical

LTL and refer the reader to a textbook for more details on the

logic (see, e.g., [7]). Moreover, let us fix some finite set P of atomic

propositions throughout the paper and define Σ = 2
P
. We denote

the set of finite and infinite words over Σ by Σ∗ and Σω , respectively.
The empty word is denoted by ε and ⊑ and ⊏ denote the non-strict

and the strict prefix relation, respectively. Moreover, we denote the

set of Booleans by B = {0, 1}.

The logics LTL and rLTL share the same syntax save for a dot

superimposed on temporal operators. More precisely, the syntax of

rLTL is given by the grammar

φ B p | ¬φ | φ ∨ φ | φ ∧ φ | φ→φ

| φ | φ Uφ | φ Rφ | φ | φ,

where p ranges over atomic propositions in P and the temporal

operators , U, R, and correspond to “next”, “until”, “release”,

“eventually”, and “always”, respectively.
3
The size |φ | of a formula φ

is the number of its distinct subformulas. Furthermore, we denote

the set of all LTL and rLTL formulas over P by ΦLTL and ΦrLTL,
respectively.

The development of rLTL was motivated by the observation that

the difference between “minor” and “major” violations of a formula

cannot be adequately described in a two-valued semantics. If an

LTL formula φ, for example, demands that the property p holds at

all positions of a word σ ∈ Σω , then σ violates φ even if p does not

hold at only a single position, a very minor violation. The semantics

of LTL, however, does not differentiate between the σ above and

a σ ′
in which the property p never holds, a major violation of the

property φ.
In order to alleviate this shortcoming, Tabuada and Neider in-

troduced Robust Linear-time Temporal Logic (rLTL) [51], whose

semantics allows for distinguishing various “degrees” to which a

word violates a formula. More precisely, the semantics of rLTL are

defined over the set B4 = {0000, 0001, 0011, 0111, 1111} of five truth
values, each of which is a monotonically increasing sequence of

four bits. We order the truth values in B4 by 0000 < 0001 < 0011 <

0111 < 1111.

Intuitively, this order reflects increasingly desirable outcomes.

If the specification is p, the least desirable outcome, represented

by 0000, is that p never holds on the entire trace. A slightly more

desirable outcome is that p at least holds sometime but not infinitely
often, which results in the value 0001. An even more desirable out-

come would be if p holds infinitely often, while also being violated

infinitely often, represented by 0011. Climbing up the ladder of

desirable outcomes, the next best one requires p to hold infinitely

often while being violated only finitely often, represented by the

value 0111. Lastly, the optimal outcome fully satisfies p, so p
hold the entire time, represented by 1111. Thus, the first bit states

whether p is satisfied, the second one stands for p, the third
one for p, and the fourth one for p. If all of them are 0, ¬p
holds. The robust release is defined analogously.

The robust eventually-operator considers future positions in the

trace and returns the truth value with the least degree of violation,

which is a maximization with respect to the order defined above.

This closely resembles the LTL definition. The robust until is defined

analogously.

Based on this, the boolean conjunction and disjunction are de-

fined as min and max, respectively, w.r.t. the order defined above,

which generalizes the classical definition thereof. For the implica-

tion, consider a specification a→ д, where a is an assump-

tion on the environment and д is a system guarantee. If the truth

value of д is greater or equal to the one of a, the assumption is

fully satisfied. Thus, the rLTL semantics takes the violation of the

assumption into account and lowers the requirements on the guar-

antees. However, if the guarantee exhibits a greater violation than

the assumptions, the truth value of the implication is the same as

the one of the guarantee. Lastly, the intuition behind the negation is

that every truth value that is not 1111 constitutes a violation of the

specification. Thus, the negation thereof is a full satisfaction (1111).

3
Note that we include the operators∧,→, andR explicitly in the syntax as they cannot

be derived from other operators due to the many-valued nature of rLTL. Following the

original work on rLTL [51], we also include the operators and explicitly (which

can be derived from U and R, respectively).
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The negation of the truth value representing a perfect satisfaction

(1111) is a full violation (0000).

To introduce the semantics, we need some additional notation:

For σ = σ (0)σ (1)σ (2) · · · ∈ Σω and a natural number n, define
σ [n,∞) = σ (n)σ (n + 1)σ (n + 2) · · · , (i.e., as the suffix of σ obtained

by removing the first n letters of σ ). To be able to refer to individual
bits of an rLTL truth value β ∈ B4, we use β[i] with i ∈ {1, . . . , 4}

as to denote the i-th bit of β .
For the sake of a simpler presentation, we denote the seman-

tics of both LTL and rLTL not in terms of satisfaction relations

but by means of valuation functions. For LTL, the valuation func-

tion V : Σω × ΦLTL → B assigns to each infinite word σ ∈ Σω and

each LTL formula φ ∈ ΦLTL the value 1 if σ satisfies φ and the

value 0 if σ does not satisfy φ, and is defined as usual (see, e.g., [7]).

The semantics of rLTL, on the other hand, is more complex and

formalized next by an evaluation function Vr : Σ
ω × ΦrLTL → B4

mapping an infinite word σ ∈ Σω and an rLTL formula φ to a truth

value in B4.

• Vr (σ ,p) =

{
1111 if p ∈ σ (0),

0000 if p < σ (0),

• Vr (σ ,¬φ) =

{
1111 if Vr (σ ,φ) , 1111,

0000 if Vr (σ ,φ) = 1111,

• Vr (σ ,φ1 ∧ φ2) = min{Vr (σ ,φ1),Vr (σ ,φ2)},
• Vr (σ ,φ1 ∨ φ2) = max{Vr (σ ,φ1),Vr (σ ,φ2)},

• Vr (σ ,φ1→φ2) =

{
1111 if Vr (σ ,φ1) ≤ Vr (σ ,φ2),

Vr (σ ,φ2) if Vr (σ ,φ1) > Vr (σ ,φ2),

• Vr (σ , φ) = Vr (σ [1,∞),φ),
• Vr (σ , φ) = β with

β[i] = maxn≥0Vr (σ [n,∞),φ)[i], i ∈ {1, . . . , 4},
• Vr (σ , φ) = β with

– β[1] = minn≥0Vr (σ [n,∞),φ)[1],
– β[2] = maxm≥0minn≥m Vr (σ [n,∞),φ)[2],
– β[3] = minm≥0maxn≥m Vr (σ [n,∞),φ)[3],
– β[4] = maxn≥0Vr (σ [n,∞),φ)[4],

• Vr (σ ,φ1 Uφ2) = β with

β[i] = maxn≥0 min{ Vr (σ [n,∞), φ2)[i],
min0≤n′<n Vr (σ [n

′,∞),φ1)[i] }, i ∈ {1, . . . , 4}
• Vr (σ ,φ1 Rφ2) = β with

– β[1] = minn≥0max{Vr (σ [n,∞),φ2)[1],
max0≤n′<n Vr (σ [n

′,∞),φ1)[1]},
– β[2] = maxm≥0minn≥m max{Vr (σ [n,∞),φ2)[2],

max0≤n′<n Vr (σ [n
′,∞),φ1)[2]},

– β[3] = minm≥0maxn≥m max{Vr (σ [n,∞),φ2)[3],
max0≤n′<n Vr (σ [n

′,∞),φ1)[3]}, and
– β[4] = maxn≥0max{Vr (σ [n,∞),φ2)[4],

max0≤n′<n Vr (σ [n
′,∞),φ1)[4]}.

Due to space restrictions, we have to refer the reader to the orig-

inal work by Tabuada and Neider [51] for a thorough introduction

and motivation.

However, we here want to illustrate the definition above and

briefly argue that it indeed captures the intuition described at the

beginning of this section. To this end, we reconsider the formulas

p and a→ д in Examples 2.1 and 2.2, respectively.

Example 2.1. Consider the formula p and the following five

infinite words over the set P = {p} of atomic propositions:

σ1 = {p}ω (“p holds always”)

σ2 = ∅{p}ω (“p holds almost always”)

σ3 = (∅{p})ω (“p holds infinitely often”)

σ4 = {p}∅ω (“p holds finitely often”)

σ5 = ∅ω (“p holds never”)

Let us begin the example with the word σ1 = {p}ω . It is not hard
to verify that Vr (σ1, p)[1] = 1 because p always holds in σ1, i.e.,
minn≥0Vr (σ [n,∞),p)[1] = 1 for n ≥ 0. Using the same argument,

we also have Vr (σ1, p)[2] = Vr (σ1, p)[3] = Vr (σ1, p)[4] = 1.

Thus, Vr (σ1, p) = 1111.

Next, let us consider the word σ2 = ∅{p}ω . In this case, we have

Vr (σ1, p)[1] = 0 because Vr (σ [0,∞),p)[1] = 0 (p does not hold in

the first symbol of σ2). However,Vr (σ1, p)[2] = 1 because p holds

almost always, i.e., maxm≥0minn≥m Vr (σ [n,∞),p)[2] = 1. More-

over, Vr (σ1, p)[3] = Vr (σ1, a)[4] = 1 and, thus, Vr (σ2, p) =
0111. Similarly, we obtain Vr (σ3, p) = 0011, Vr (σ4, p) = 0001,

and Vr (σ5, p) = 0000.

In conclusion, this indeed illustrates that the semantics of the

robust always is in accordance with the intuition provided at the

beginning of this section.

Example 2.2. Let us now consider the more complex formula

a→ д, where we interpret a to be an assumption on the envi-

ronment of a cyber-physical system and д one of its guarantees.

Moreover, let σ be an infinite word over P = {a,д} such that

Vr (σ , a→ д) = 1111. We now distinguish various cases.

First, let us assume that σ is such that Vr (σ , a) = 1111, i.e.,

a always holds. By definition of the robust implication and since

Vr (σ , a→ д) = 1111, this can only be the case if Vr (σ , д) =
1111. Thus, the formula a→ д ensures that if the environment

assumption a always holds, so does the system guarantee д.
Next, assume that σ is such that Vr (σ , a) = 0111, i.e., a does

not always hold but almost always. By definition of the robust

implication and since Vr (σ , a→ д) = 1111, this can only be

the case if Vr (σ , д) ≥ 0111. In this case, the formula a→ д
ensures that if the environment assumption a holds almost always,

then the system guarantee д holds almost always or—even better—

always.

It is not hard to verify that we obtain similar results for the

casesVr (σ , a) ∈ {0011, 0001, 0000}. In other words, the semantics

of rLTL ensures that the violation of the system guarantee д is

always proportional to the violation of the environment assump-

tion a (given that Vr (σ , a→ д) evaluates to 1111). Again, this

illustrates that the semantics of the implication is in accordance

with the intuition provided at the beginning of this section.

Alternatively, the rLTL evaluation function can be expressed by

evaluating a sequence of four LTL formulas φi , one for each bit i ,
obtained by a straightforward rewriting of φ. Such a transformation

for general formulas is explained in the appendix of the technical

report.). The remark below illustrates how this is done for “simple”

rLTL formulas.
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Remark. Let φ be an rLTL formula that has no always in the scope
of a negation and only uses negation, conjunction, disjunction, next,
eventually, and always. Then, for all σ ∈ Σω ,

• Vr (σ ,φ)[1] = V (σ ,φ1) where φ1 is the formula obtained from
φ by replacing every / / by / / , respectively,

• Vr (σ ,φ)[2] = V (σ ,φ2) where φ2 is the formula obtained from
φ by replacing every / by / , and by ,

• Vr (σ ,φ)[3] = V (σ ,φ3) where φ3 is the formula obtained from
φ by replacing every / by / , and by ,

• Vr (σ ,φ)[4] = V (σ ,φ4) where φ4 is the formula obtained from
φ by replacing every / by / , and by .

Finally, note that rLTL is an extension of LTL. In fact, the LTL

semantics can be recovered from the first bit of the rLTL seman-

tics [51] (after every implication φ→ψ has been replaced with

¬φ ∨ψ ).4

3 MONITORING ROBUST LTL
In their work on LTL monitoring, Bauer et al. [13] define the prob-

lem of runtime monitoring as “check[ing] LTL properties given fi-
nite prefixes of infinite [words]”. More formally, given some pre-

fix u ∈ Σ∗ and some LTL formula φ, it asks whether all, some,

or no infinite extension uσ ∈ Σω of u by some σ ∈ Σω satis-

fies φ. To reflect these three possible results, the authors use the

set B? = {0, ?, 1} to define a three-valued logic that is syntacti-

cally identical to LTL, but equipped with a semantics in form of

an evaluation function Vm
: Σ∗ × ΦLTL → B? over finite prefixes.

This semantics is defined such that Vm (u,φ) is equal to 0 (is equal

to 1) if no (if every) extension uσ of u satisfies φ. If neither is the
case, i.e., if there is an extension of u that satisfies φ and there is an

extension of u that does not satisfy φ, then Vm (u,φ) is equal to ?.

We aim to extend the approach of Bauer et al. to rLTL, whose

semantics is based on truth values from the set B4 (containing the

sequences of length four in 0
∗
1
∗
). As a motivating example, let us

consider the formula φ = s for some atomic proposition s and
study which situations can arise when monitoring this formula.

Note that the truth value of φ can be obtained by concatenating the

truth values of the LTL formulas φ1 = s , φ2 = s , φ3 = s ,
and φ4 = s .

First, consider the empty prefix and its two extensions ∅ω and

{s}ω . We have Vr (∅
ω ,φ) = 0000 and Vr ({s}

ω ,φ) = 1111. Thus, all

four bits can both be equal to 0 and 1. This situation is captured

by the sequence ???? which signifies that for every position i and
every bit b ∈ B, there exists an extension of ε that has bit b in the

i-th position of the truth value with respect to φ.
Now, consider the prefix {s} for which we haveVr ({s}σ ,φ)[4] =

1 for every σ ∈ Σω as φ4 = s is satisfied on each extension of {s}
(s has already occurred). On the other hand, Vr ({s}∅

ω ,φ) = 0001

and Vr ({s}{s}
ω ,φ) = 1111, i.e., the first three bits can both be 0

and 1 by picking an appropriate extension. Hence, the situation

is captured by the sequence ???1, signifying that the last bit is

4
It turns out that Tabuada and Neider’s original proof [51, Proposition 5] has a minor

mistake. Although the first bit of the rLTL semantics coincides with the original LTL

semantics for all formulas that do not contain implications, the formula ¬a → a
is an example witnessing this claim is no longer correct in the presence of implications,

e.g., for {a }∅ω . However, this issue can be fixed by replacing every implicationφ→ψ
with ¬φ ∨ψ . This substitution results in an equivalent LTL formula for which the

first bit of the rLTL semantics indeed coincides with the LTL semantics.

determined by the prefix, but the first three are not. Using dual

arguments, the sequence 0??? is used for the prefix ∅, signifying that

the first bit is determined by the prefix as every extension violates

φ1 = s . However, the last three bits are not yet determined by the

prefix, hence the trailing ?’s.

Finally, consider the prefix {s}∅. Using the same arguments as

for the previous two prefixes, we obtain Vr ({s}∅σ ,φ)[1] = 0 and

Vr ({s}∅σ ,φ)[4] = 1 for every σ ∈ Σω . Also, as before, we have

Vr ({s}∅∅
ω ,φ) = 0001 and Vr ({s}∅{s}

ω ,φ) = 0111. Hence, here we

obtain the sequence 0??1 signifying that the first and last bit are

determined by the prefix, but the middle two are not.

In general, we use truth values of the form 0
∗
?
∗
1
∗
, which follows

from the fact that the truth values of rLTL are in 0
∗
1
∗
. Hence, let

B?
4
denote the set of sequences of length four in 0

∗
?
∗
1
∗
. Based on

B?
4
, we now formally define the rLTL monitoring semantics as a

bitwise generalization of the LTL definition.

Definition 3.1. The semantics of the robust monitor Vm
r : Σ∗ ×

ΦrLTL → B?
4
is defined as Vm

r (u,φ) = β with

β[i] =


0 if Vr (uσ ,φ)[i] = 0 for all σ ∈ Σω ;

1 if Vr (uσ ,φ)[i] = 1 for all σ ∈ Σω ; and

? otherwise,

for every i ∈ {1, . . . , 4}, every rLTL formula φ, and every u ∈ Σ∗.

Using this semantics, we are able to infer information about

the infinite run of a system after having read only a finite prefix

thereof. In fact, this robust semantics provides far more information

about the degree of violation of the specification than classical LTL

monitoring as each bit of the monitoring output represents a degree

of violation of the specification: a ? turning into a 0 or 1 indicates

a deterioration or improvement in the system’s state, respectively.

Consider, for instance, an autonomous drone with specification

φ = s where s denotes a state of stable flight (recall the motivating

example on Page 5). Initially, the monitor would output ???? due

to a lack of information. If taking off under windy conditions, the

state s is not reached initially, hence the monitor issues a warning

by producing Vm
r (∅n,φ) = 0??? for every n > 0. Thus, the safety

condition is violated temporarily, but not irrecoverably. Hence,

mitigation measures can be initiated. Upon success, the monitoring

output turns into Vm
r (∅n {s},φ) = 0??1 for every n > 0, signaling

that flight was stable for some time.

Before we continue, let us first state that the new semantics

is well-defined, i.e., that the sequence β[1]β[2]β[3]β[4] in Defini-

tion 3.1 is indeed in B?
4
.

Lemma 3.2. Vm
r (u,φ) ∈ B?

4
for every rLTL formula φ and every

u ∈ Σ∗.

After having shown that every possible output of Vm
r is in B?

4
,

the next obvious question is whetherVm
r is surjective, i.e., whether

every truth value β ∈ B?
4
is realized by some prefix u ∈ Σ∗ and

some rLTL formula φ in the sense that Vm
r (u,φ) = β . Recall the

motivating example above: The formula s realizes at least the
following four truth values: ???? (on ε), ???1 (on {s}), 0??? (on ∅),

and 0??1 (on {s}∅). It is not hard to convince oneself that these

are all truth values realized by s as they represent the following

four types of prefixes that can be distinguished: the prefix is empty
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(truth value ????), the prefix is in {s}+ (truth value ???1), the prefix

is in ∅+ (truth value 0???), or the prefix contains both an {s} and
an ∅ (truth value 0??1).

For most other truth values, it is straightforward to come up

with rLTL formulas and prefixes that realize them. See Table 1 for

an overview and recall Remark 2, which is applicable to all these

formulas.

For others, such as 0011, it is much harder. Intuitively, to realize

0011, one needs to find an rLTL formula φ and a prefix u ∈ Σ∗

such that the formula obtained by replacing all in φ by is

not satisfied by any extension of u, but the formula obtained by

replacing all in φ by is satisfied by every extension of u.5

Thus, intuitively, the prefix has to differentiate between a property

holding almost always and holding infinitely often. It turns out that

no such u and φ exist. A similar argument is true for 0001, leading

to the following theorem.

Theorem 3.3. All truth values except for 0011 and 0001 are real-
izable.

As shown in Table 1, all of the realizable truth values except for

0111 are realized by formulas using only conjunction, disjunction,

negation, eventually, and always. Further, 0111 can only be realized

by a formula with the release operator while the truth values 0011

and 0001 are indeed not realizable at all.

Note that the two unrealizable truth values 0011 and 0001 both

contain a 0 that is directly followed by a 1. The proof of unreal-

izability formalizes the intuition that such an “abrupt” transition

from definitive violation of a property to definitive satisfaction of

the property cannot be witnessed by any finite prefix. Finally, the

only other truth value of this form, 0111, is only realizable by using

a formula with the release operator.

Going again back to the motivating example s , consider the
evolution of the truth values on the sequence ε, {s}, {s}∅: They are

????, ???1, and 0??1, i.e., 0’s and 1’s are stable when extending a

prefix, only a ? may be replaced by a 0 or a 1. This property holds

in general. To formalize this, say that β ′ ∈ B?
4
is more specific than

β ∈ B?
4
, written as β ⪯ β ′, if, for all i , β[i] , ? implies β ′[i] = β[i].

Lemma 3.4. Let φ be an rLTL formula and u,u ′ ∈ Σ∗. If u ⊑ u ′,
then Vm

r (u,φ) ⪯ Vm
r (u ′,φ).

Lemma 3.4 immediately implies two properties of the seman-

tics: impartiality and anticipation [17]. Impartiality states that a

definitive verdict will never be revoked: If Vm
r (u,φ)[i] , ?, then

for all finite extensions v ∈ Σ∗, the verdict will not change, so

Vm
r (uv,φ)[i] = Vm

r (u,φ)[i]. Anticipation requires that a definitive

verdict is decided as soon as possible, i.e., if Vm
r (u,φ)[i] = ?, then

u can still be extended to satisfy and to violate φ with the i-th bit.

Formally, there have to exist infinite extensions σ0 and σ1 such

that Vr (uσ0,φ)[i] = 0 and Vr (uσ1,φ)[i] = 1. Anticipation holds by

definition of Vm
r (u,φ).

Due to Lemma 3.4, for a fixed formula, the prefixes of every

infinite word can assume at most five different truth values, which

are all of increasing specificity. It turns out that this upper bound

is tight. To formalize this claim, we denote the strict version of ⪯

by ≺, i.e., β ≺ β ′ if and only if β ⪯ β ′ and β , β ′.

5
Note that this intuition breaks down in the presence of implications and negation,

due to their non-standard definitions.

Lemma 3.5. There is an rLTL formula φ and prefixes u0 ⊏ u1 ⊏
u2 ⊏ u3 ⊏ u4 such that Vm

r (u0,φ) ≺ Vm
r (u1,φ) ≺ Vm

r (u2,φ) ≺

Vm
r (u3,φ) ≺ Vm

r (u4,φ).

After determining how many different truth values can be as-

sumed by prefixes of a single infinite word, an obvious question is

how many truth values can be realized by a fixed formula on differ-
ent prefixes. It is not hard to combine the formulas in Table 1 to a

formula that realizes all truth values not ruled out by Theorem 3.3.
6

Lemma 3.6. There is an rLTL formula φ such that for every β ∈

B?
4
\ {0011, 0001} there is a prefix uβ with Vm

r (uβ ,φ) = β .

Finally, let us consider the notion ofmonitorability [46], an impor-

tant concept in the theory of runtime monitoring. As a motivation,

consider the LTL formulaψ = s and an arbitrary prefix u ∈ Σ∗.
Then, the extension u{s}ω satisfiesψ while the extension u∅ω does

not satisfyψ , i.e., satisfaction ofψ is independent of any prefix u.
Hence, we have Vm (u,ψ ) = ? for every prefix u, i.e., monitoring

the formulaψ does not generate any information.

In general, for a fixed LTL formula φ, a prefix u ∈ Σ∗ is called
ugly if we have Vm (uv,φ) = ? for every finite v ∈ Σ∗, i.e., every
finite extension of u yields an indefinite verdict.

7
Now, φ is LTL-

monitorable if there is no ugly prefix with respect to φ. A wide

range of LTL formulas (e.g.,ψ = s as above) are unmonitorable

in that sense. In particular, 44% of the LTL formulas considered in

the experiments of Bauer et al. are not LTL-monitorable.

We next generalize the notion of monitorability to rLTL. In par-

ticular, we answer whether there are unmonitorable rLTL formulas.

Then, in Section 5, we exhibit that all LTL formulas considered by

Bauer et al.’s experimental evaluation, even the unmonitorable ones,

are monitorable under rLTL semantics. To conclude the motivating

example, note that the rLTL analogue s of the LTL formulaψ
induces two truth values from B?

4
indicating whether s has been

true at least once (truth value ???1) or not (truth value ????). Even

more so, every prefix inducing the truth value ???? can be extended

to one inducing the truth value ???1.

Definition 3.7. Letφ be an rLTL formula. A prefixu ∈ Σ∗ is called
ugly if we have Vm (uv,φ) = ???? for every finite v ∈ Σ∗. Further,
φ is rLTL-monitorable if it has no ugly prefix.

As argued above, the formula s has no ugly prefix, i.e., it

is rLTL-monitorable. Thus, we have found an unmonitorable LTL

formula whose rLTL analogue (the formula obtained by adding dots

to all temporal operators) is monitorable. The converse statement is

also true. There is a monitorable LTL formula whose rLTL analogue

is unmonitorable. To this end, consider the LTL formula

( s ∧ ¬s) → ( s ∧ ¬ s),

which is a tautology and therefore monitorable. On the other hand,

we claim that ∅{s} is an ugly prefix for the rLTL analogueφ obtained

6
However, there are also formulas assuming many truth values, e.g., the following

formula from LTLStore [34], which assumes ten different truth values:

(((a ∧ d ) ∨ (¬a ∧ ¬d )) ∧ (¬b ∨ (¬a ∧ d )))∨

(((¬a ∧ d ) ∨ (a ∧ ¬d )) ∧ (b ∧ (a ∨ ¬d ))) ∨ (a ∧ b)

7
Note that the good/bad prefixes introduced by Kupfermann and Vardi [36] always

yield a positive/negative verdict, respectively. Ugly prefixes [13] always yield an

indefinite verdict.
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Table 1: Realizable truth values. For every truth value β , the next two columns show prefixes u and formulas φ such that
Vm
r (u,φ) = β , or that β is unrealizable.

Value Prefix Formula Value Prefix Formula

0000 ε a ∧ ¬a 0?11 ∅{a} a ∨ ¬a

000? ε a ∧ ¬ a 0111 ∅{a} aRa

0001 unrealizable ???? ε a

00?? ε a ∧ ¬a ???1 {a} a

00?1 ∅{a} a ∧ ¬a ??11 ε a ∨ ¬ a

0011 unrealizable ?111 ε a ∨ ¬ ¬ ¬a

0??? ∅ a 1111 ε a ∨ ¬a

0??1 ∅{a} a

by adding dots to the temporal operators. To this end note that we

have both Vr (∅{s}v∅
ω ,φ) = 1111 and Vr (∅{s}v{s}

ω ,φ) = 0000 for

every v ∈ Σ∗. Hence, Vm
r (∅{s}v,φ) = ???? for every such v , i.e.,

∅{s} is indeed ugly and φ therefore not rLTL-monitorable.

Thus, there are formulas that are unmonitorable under LTL se-

mantics, butmonitorable under rLTL semantics and there are formu-

las that are unmonitorable under rLTL semantics, but monitorable

under LTL semantics. Using these formulas one can also construct

a formula that is unmonitorable under both semantics.

To this end, fix LTL formulas φℓ and φr over disjoint sets of

propositions and a fresh proposition p not used in either formula

such that

• φℓ has an ugly prefix uℓ under LTL semantics, and

• φr (with dotted operators) has an ugly prefix ur under rLTL

semantics.

We can assume both prefixes to be non-empty, as ugliness is closed

under finite extensions. Let φ = (p ∧ φℓ) ∨ (¬p ∧ φr ). Then, the
prefix obtained from uℓ by adding the proposition p to the first

letter is ugly for φ under LTL semantics and ur is ugly for φ (with

dotted operators) under rLTL semantics.

As a final example, recall that we have shown that s is rLTL-
monitorable and consider its negation ¬ s . It is not hard to see

that Vm
r (u,φ) = ???? holds for every prefix u. Hence, ε is an ugly

prefix for the formula, i.e., we have found another unmonitorable

rLTL formula. In particular, the example shows that, unlike for LTL,

rLTL-monitorability is not preserved under negation.

After having studied properties of rLTL monitorability, we next

show our main result: The robust monitoring semanticsVm
r can be

implemented by finite-state machines.

4 CONSTRUCTION OF RLTL MONITORS
An rLTL monitor is an implementation of the robust monitoring

semantics Vm
r in form of a finite-state machine with output. More

precisely, an rLTL monitor for an rLTL formula φ is a finite-state

machine Mφ that on reading an input u ∈ Σ∗ outputs Vm
r (u,φ).

In this section, we show how to construct rLTL monitors and that

this construction is asymptotically not more expensive than the

construction of LTL monitors. Let us fix an rLTL formula φ for the

remainder of this section.

Our rLTL monitor construction is inspired by Bauer et al. [13]

and generates a sequence of finite-state machines (i.e., Büchi auto-

mata over infinite words, (non)deterministic automata over finite

words, and Moore machines). Underlying these machines are tran-
sition structures T = (Q,qI ,∆) consisting of a nonempty, finite

set Q of states, an initial state qI ∈ Q , and a transition relation

∆ ⊆ Q × Σ ×Q . An (infinite) run of T on a word σ = a0a1a2 · · · ∈
Σω is a sequence ρ = q0q1 · · · of states such that q0 = qI and

(qj ,aj ,qj+1) ∈ ∆ for j ∈ N. Finite runs on finite words are de-

fined analogously. The transition structure T is deterministic if
(a) (q,a,q′) ∈ ∆ and (q,a,q′′) ∈ ∆ imply q′ = q′′ and (b) for each

q ∈ Q and a ∈ Σ there exists a (q,a,q′) ∈ ∆. We then replace the

transition relation ∆ by a function δ : Q ×Σ → Q . Finally, we define

the size of a transition structure T as |T | = |Q | in order to measure

its complexity.

Our construction then proceeds in three steps:

(1) We bring φ into an operational form by constructing Büchi

automata A
φ
β for each truth value β ∈ B4 that can decide

the valuation Vr (σ ,φ) of infinite words σ ∈ Σω .
(2) Based on these Büchi automata, we then construct nondeter-

ministic automata B
φ
β that can decide whether a finite word

u ∈ Σ∗ can still be extended to an infinite word uσ ∈ Σω

with Vr (uσ ,φ) = β .
(3) We determinize the nondeterministic automata obtained in

Step 2 and combine them into a single Moore machine that

computes Vm
r (u,φ).

Let us now describe each of these steps in detail.

Step 1: We first translate the rLTL formula φ into several Büchi

automata using a construction by Tabuada and Neider [51], sum-

marized in Theorem 4.1 below. A Büchi automaton is a four-tuple

A = (Q,qI ,∆, F ) where T = (Q,qI ,∆) is a transition structure and

F ⊆ Q is a set of accepting states. A run π of A on σ ∈ Σω is a run

of T on σ , and we say that π is accepting if it contains infinitely

many states from F . The automaton A accepts a word σ if there

exists an accepting run of A on σ . The language L(A) is the set of

all words accepted by A, and the size of A is defined as |A| = |T |.

Theorem 4.1 (Tabuada and Neider [51]). Given a truth value
β ∈ B4, one can construct a Büchi automaton A

φ
β with 2

O(|φ |) states
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such that L(A
φ
β ) = {σ ∈ Σω | Vr (σ ,φ) = β}. This construction can

be performed in 2
O(|φ |) time.

The Büchi automata A
φ
β for β ∈ B4 serve as building blocks for

the next steps.

Step 2: For each Büchi automaton A
φ
β obtained in the previous

step, we now construct a nondeterministic automaton B
φ
β over

finite words. This automaton determines whether a finite word

u ∈ Σ∗ can be continued to an infinite word uσ ∈ L(A
φ
β ) (i.e.,

Vr (uσ ,φ) = β) and is used later to construct the rLTL monitor.

Formally, a nondeterministic finite automaton (NFA) is a four-

tuple A = (Q,qI ,∆, F ) that is syntactically identical to a Büchi

automaton. The size ofA is defined analogously to Büchi automata.

In contrast to Büchi automata, however, NFAs only admit finite

runs on finite words, i.e., a run of A on u = a0 · · ·an−1 ∈ Σ∗ is a
sequence q0 · · ·qn such that q0 = qI and (qj ,aj ,qj+1) ∈ ∆ for every

j < n. A run q0 · · ·qn is called accepting if qn ∈ F . Accepted words

as well as the language of A are again defined analogously to the

Büchi case. If (Q,qI ,∆) is deterministic, A is a deterministic finite
automaton (DFA). It is well-known that for each NFA A one can

construct a DFA A ′
with L(A) = L(A ′) and |A ′ | ∈ O(2 |A |).

Given the Büchi automaton A
φ
β = (Qβ ,qI ,β ,∆β , Fβ ), we first

compute the set F⋆β = {q ∈ Qβ | L(A
φ
β (q)) , ∅}, where A

φ
β (q)

denotes the Büchi automaton A
φ
β but with initial state q instead

of qI . Intuitively, the set F
⋆
β contains all states q ∈ Qβ from which

there exists an accepting run in A
φ
β and, hence, indicates whether

a finite word u ∈ Σ∗ reaching a state of F⋆β can be extended to

an infinite word uσ ′ ∈ L(A
φ
β ). The set F

⋆
β can be computed, for

instance, using a nested depth-first search [49] for each stateq ∈ Qβ .

Since each such search requires time quadratic in |A
φ
β |, the set F

⋆
β

can be computed in time O(|A
φ
β |

3).

Using F⋆β , we define the NFA B
φ
β = (Qβ ,qI ,β ,∆β , F

⋆
β ). It shares

the transition structure of A
φ
β and uses F⋆β as the set of final states.

The next lemma states that B
φ
β indeed recognizes prefixes of words

in L(A
φ
β ).

Lemma 4.2. Let β ∈ B4 and u ∈ Σ∗. Then, u ∈ L(B
φ
β ) if and only

if there exists an infinite word σ ∈ Σω with Vr (uσ ,φ) = β .

Before we continue to the last step in our construction, let us

briefly comment on the complexity of computing the NFAs B
φ
β .

Since B
φ
β and A

φ
β share the same underlying transition structure,

we immediately obtain |B
φ
β | ∈ 2

O(|φ |)
. Moreover, the construction

of B
φ
β is dominated by the computation of the set F⋆β and, hence,

can be done in time 2
O(|φ |)

.

Step 3: In the final step, we construct a Moore machine imple-

menting an rLTL monitor for φ. Formally, aMoore machine is a five-
tuple M = (Q,qI , δ , Γ, λ) consisting of a deterministic transition

structure (Q,qI , δ ), an output alphabet Γ, and an output function

λ : Q → Γ. The size of M as well of runs of M are defined as for

DFAs. In contrast to a DFA, however, a Moore machine M com-

putes a function λM : Σ∗ → Γ that is defined by λM (u) = λ(qn )
where qn is the last state reached on the unique finite run q0 · · ·qn
of M on its input u ∈ Σ∗.

The first step in the construction of the Moore machine is to

determinize the NFAs B
φ
β , obtaining equivalent DFAs C

φ
β = (Q ′

β ,

q′I ,β , δ
′
β , F

′
β ) of at most exponential size in |B

φ
β |. Subsequently, we

combine these DFAs into a single Moore machine Mφ implement-

ing the desired rLTL monitor. Intuitively, this Moore machine is

the product of the DFAs C
φ
β for each β ∈ B4 and tracks the run of

each individual DFA on the given input. Formally,Mφ is defined

as follows.

Definition 4.3. Let B4 = {β1, β2, β3, β4, β5}. We define Mφ =

(Q,qI , Γ, δ , λ) by

• Q = Q ′
β1

×Q ′
β2

×Q ′
β3

×Q ′
β4

×Q ′
β5
;

• qI = (q′I ,β1
,q′I ,β2

,q′I ,β3
,q′I ,β4

,q′I ,β5
);

• δ
(
(q1,q2,q3,q4,q5),a

)
= (q′

1
,q′

2
,q′

3
,q′

4
,q′

5
)

where q′j = δ
′
βj
(qj ,a) for each j ∈ {1, . . . , 5};

• Γ = B?
4
; and

• λ
(
(q1,q2,q3,q4,q5)

)
=

ξ
({
βj ∈ B4 | qj ∈ F ′βj

, j ∈ {1, . . . , 5}
})
,

where the surjective function ξ : 2B4 → B?
4
translates sets B ⊆

B4 of truth values to the robust monitoring semantics as follows:

ξ (B) = β? ∈ B?
4
with

β?[j] =


0 if β[j] = 0 for each β ∈ B;

1 if β[j] = 1 for each β ∈ B; and

? otherwise.

The main result of this paper now shows that the Moore machine

Mφ implements Vm
r , i.e., we have λMφ (u) = Vm

r (u,φ) for every

prefix u.

Theorem 4.4. For every rLTL formula φ, one can construct an
rLTL monitor of size 22

O(|φ |)

.

In a final post-processing step, we minimizeMφ (e.g., using one

of the standard algorithms for deterministic automata). As a result,

we obtain the unique minimal monitor for the given rLTL formula.

It is left to determine the complexity of our rLTL monitor con-

struction. Since each DFA C
φ
β is in the worst case exponential in the

size of the NFA B
φ
β , we immediately obtain that C

φ
β is at most of

size 2
2
O(|φ |)

. Thus, the Moore machineMφ is at most of size 2
2
O(|φ |)

as well and can be effectively computed in doubly-exponential time

in |φ |. Note that this matches the complexity bound of Bauer et al.’s

approach for LTL runtime monitoring [13]. Moreover, this bound

is tight since rLTL subsumes LTL and a doubly-exponential bound

is tight for LTL [13, 36]. Hence, robust runtime monitoring asymp-

totically incurs no extra cost compared to classical LTL runtime

monitoring. However, it provides more useful information as we

demonstrate next in our experimental evaluation.
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5 EXPERIMENTAL EVALUATION
Besides incorporating a notion of robustness into classical LTL

monitoring, our rLTL monitoring approach also promises to pro-

vide richer information than its LTL counterpart. In this section,

we evaluate empirically whether this promise is actually fulfilled.

More precisely, we answer the following two questions on a com-

prehensive suite of benchmarks:

(1) How does rLTL monitoring compare to classical LTL moni-

toring in terms of monitorability?

(2) For formulas that are both LTL-monitorable and rLTL-moni-

torable, how do both approaches compare in terms of the size

of the resulting monitors and the time required to construct

them?

To answer these research questions, we have implemented a

prototype, which we named rLTL-mon. Our prototype is written
in Java and builds on top of two libraries: Owl [35], a library for

LTL and automata over infinite words, as well as AutomataLib

(part of LearnLib [32]), a library for automata over finite words

and Moore machines. For technical reasons (partly due to limita-

tions of the Owl library and partly to simplify the implementation),

rLTL-mon uses a monitor construction that is slightly different from

the one described in Section 4: Instead of translating an rLTL for-

mula into nondeterministic Büchi automata, rLTL-mon constructs
deterministic parity automata. These parity automata are then di-

rectly converted into DFAs, thus skirting the need for a detour over

NFAs and a subsequent determinization step. Note, however, that

this alternative construction produces the same rLTL monitors than

the one described in Section 4. Moreover, it has the same asymp-

totic complexity. The (anonymized) sources of our prototype are

available online under the MIT license.
8

Benchmarks and Experimental Setup. Starting point of our

evaluation was the original benchmark suite of Bauer et al. [13],

which is based on a survey by Dwyer on frequently used software

specification patterns [20]. This benchmark suite consists of 97

LTL formulas and covers a wide range of patterns, including safety,

scoping, precedence, and response patterns. For our rLTL monitor

construction, we interpreted each LTL formula in the benchmark

suite as an rLTL formula (by treating every operator as a robust

operator).

We compared rLTL-mon to Bauer et al.’s implementation of their

LTL monitoring approach, which the authors named LTL3 tools.
This tool uses LTL2BA [28] to translate LTL formulas into Büchi

automata and AT&T’s fsmlib as a means to manipulate finite-state

machines. Since LTL2BA’s and Owl’s input format for LTL formulas

do not match exactly, we have translated all benchmarks into a

suitable format using a python script.

We conducted all experiments on an Intel Core i5-6600@ 3.3GHz

in a virtual machine with 4GB of RAM running Ubuntu 18.04 LTS.

As no monitor construction took longer than 600 s , we did not

impose any time limit.

Results. Our evaluation shows that LTL3 tools and rLTL-mon
are both able to generate monitors for all 97 formulas in Bauer et

8
https://gitlab.mpi-sws.org/rltl/rltl-runtime-monitoring-code

al.’s benchmark suite.
9
Aggregated statistics of this evaluation are

visualized in Figure 1.
10

The histogram in Figure 1a shows the aggregate number of

LTL and rLTL monitors with respect to their number of states. As

Bauer et al. already noted in their original work, the resulting LTL

monitors are quite small (none had more than six states), which

they attribute to Dwyer et al.’s specific selection of formulas [20].

A similar observation is also true for the rLTL monitors: None had

more than eight states.

To determine which formulas are monitorable and which are

not, we used a different, though equivalent definition, which is

easy to check on the monitor itself: an LTL formula (rLTL formula)

is monitorable if and only if the unique minimized LTL monitor

(rLTL monitor) does not contain a sink-state with universal self-

loop that outputs “?” (that outputs “????”). Bauer et al. report that

44.3% of all LTL monitors (43 out of 97) have this property (in

fact, exactly the 43 LTL monitors with a single state), which means

that 44.3% of all formulas in their benchmark suite are not LTL-

monitorable. By contrast, all these formulas are rLTL-monitorable.

Moreover, in 78.4% of the cases (76 out of 97), the rLTL monitor

has more distinct outputs than the LTL monitor, indicating that

the rLTL monitor provides more fine-grained information of the

property being monitored; in the remaining 21.6 %, both monitors

have the same number of distinct outputs. These results answer our

first research question strongly in favor of rLTL monitoring: rLTL
monitoring did in fact provide more information than its classical
LTL counterpart. In particular, only 55.7% of the benchmarks are
LTL-monitorable, whereas 100 % are rLTL-monitorable.

Let us now turn to our second research question and compare

both monitoring approaches on the 54 formulas that are both LTL-

monitorable and rLTL-monitorable. For these formulas, Figure 1b

further provides statistical analysis of the generated monitors in

terms of their size (left diagram) as well as the time required to

generate them (right diagram). Each box in the diagrams shows

the lower and upper quartile (left and right border of the box,

respectively), the median (line within the box), and minimum and

maximum (left and right whisker, respectively).

Let us first consider the size of the monitors (left diagram of

Figure 1b). The majority of LTL monitors (52) has between two and

four states, while the majority of rLTL monitors (45) has between

two and five states. For 21 benchmarks, the LTL and rLTL monitors

are of equal size, while the rLTL monitor is larger for the remaining

33 benchmarks (in no case is the LTL monitor larger than the rLTL

monitor). On average, rLTL monitors are about 1.5 times larger

than the corresponding LTL monitors.

Let us now discuss the time taken to construct the monitors. As

the diagram on the right-hand-side of Figure 1b shows, LTL3 tools
was considerably faster than rLTL-mon on a majority of bench-

marks (around 0.1 s and 2.6 s per benchmark, respectively). For all

54 benchmarks, the rLTL monitor construction took longer than

the construction of the corresponding LTL monitor (although there

are two non-LTL-monitorable formulas for which the construction

of the rLTL monitor was faster). However, we attribute this large

9
Note that the tools disagreed on one monitor where LTL3 tools constructed a

monitor with 1 state whereas rLTL-mon constructed an LTL monitor with 8 states.

The respective formula was removed from the reported results.

10
Detailed statistics can be found in the technical report.

https://gitlab.mpi-sws.org/rltl/rltl-runtime-monitoring-code
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Figure 1: Comparison of rLTL-mon and LTL3 tools on Bauer et al.’s benchmarks [13]

runtime gap partly to the overhead caused by repeatedly start-

ing the Java virtual machine, which is not required in the case of

LTL3 tools. Note that this is not a concern in practice as a monitor

is only constructed once before it is deployed.

Finally, our analysis answers our second question: rLTL monitors
are only slightly larger than the corresponding LTL monitors and
although they require considerably more time to construct, the overall
construction time was negligible for almost all benchmarks.

6 CONCLUSION
We adapted the three-valued LTL monitoring semantics of Bauer

et al. to rLTL, proved that the construction of monitors is asymptot-

ically no more expensive than the one for LTL, and validated our

approach on the benchmark of Bauer et al.: All formulas are rLTL-

monitorable and the rLTL monitor is strictly more informative than

its LTL counterpart for 77% of their formulas.

Recall Theorem 3.3, which states that the truth values 0011 and

0001 are not realizable. This points to a drawback regarding the

two middle bits: When considering the formula a, the second bit

represents a and the third bit a. A prefix cannot possibly

provide enough information to distinguish these two formulas. On

the other hand, the truth value ??11 is realizable, which shows that

the middle bits can be relevant. In further work, we will investigate

the role of the middle bits in rLTL monitoring.

Moreover, the informedness of a monitor can be increased fur-

ther when attributing a special role to the last position(s) of a prefix.

Even though a prefix of the form ∅+{a}+ does not fully satisfy

a, neither does it fully violate it. If the system just now reached

a state in which {a} always holds, an infinite continuation of the

execution would satisfy the specification. So rather than reporting

an undetermined result, the monitor could indicate that an infi-

nite repetition of the last position of the prefix would satisfy the

specification. Similarly, for a prefix {a}+∅, the specification a
is undetermined. While an infinite repetition of the last position

({a}+∅ω ) does not satisfy the specification, an infinite repetition of

the last two positions ({a}+(∅{a})ω ) would. We plan to investigate

an extension of rLTL which takes this observation into account.

Bauer et al. [11] proposed an orthogonal approach with the logic

RV-LTL. Here, the specification can contain the strong (weak) next-

operator whose operand is consider violated (satisfied) at the last

position of the trace. A formula that is undetermined under the

strong semantics and satisfied (violated) under the weak semantics

is considered potentially true (potentially false). Incorporating one

of these approaches into rLTL monitoring could refine its output

and thus increase its level of informedness.

Moreover, desired properties for cyber-physical systems often

include real-time components such as “touch the ground at most

15 seconds after receiving a landing command”. Monitors for logics

taking real-time into account [14], such as STL [39, 40], induce high

computational overhead at runtime when compared to LTL and

rLTL monitors. Thus, a real-time extension for rLTL retaining its

low runtime cost would greatly increase its viability as specification

language.
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